Automated Scheduling for the Orbiting Carbon Observatory 3 Mission

Alan Moy, Amruta Yelamanchili, Steve Chien, Annmarie Eldering, Ryan Pavlick
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
{firstname.lastname } @jpl.caltech.edu

Abstract

We describe the automated scheduling system in development
and in use for the Orbiting Carbon Observatory-3 Mission
(OCO-3), which launched to the International Space Station
in May 2019. We first describe the high level scheduling prob-
lem of scheduling the four types of observations: nadir, glint,
target, and snapshot area map. We then describe the major
complexity of OCO-3 scheduling - enforcing geometric visi-
bility constraints for snapshot area map and target modes. We
also describe the automated scheduling of instrument point-
ing calibration. We then describe current and related work as
well as future directions for the scheduling of OCO-3.

Introduction

The Orbiting Carbon Observatory 3 (OCO-3) is a NASA
(National Aeronautics and Space Administration) instru-
ment for measuring atmospheric COs. It is mounted on the
International Space Station (ISS) on the Japanese Experi-
ment Module - Exposed Facility (JEM-EF). OCO-3 will en-
able identification of CO- sources and sinks and the study
of changes in CO; levels over time, both throughout the
day and across seasonal cycles. It is made up of three high-
resolution spectrometers integrated into one structure with
a common telescope. It identifies CO5 indirectly by mea-
suring the intensity of solar radiation reflected off of CO,
molecules in the air column. OCO-3 was installed on the
ISS in May 2019, and has a planned operational life of three
years (NASA 2019).
OCO-3 has four (4) operational modes:

* Nadir mode - observations directly below the instrument,
suitable for measurement over land

 Glint mode - observations taken over the ocean that point
near the glint spot (point of maximum solar reflection) to
counter the reduced reflection of the ocean

* Snapshot Area Map mode for rectangular regions of inter-
est

* Target mode for points of interest

The instrument is outfitted with an agile two-dimensional
pointing mirror, known as the Pointing Mirror Assembly
(PMA). The PMA allows rapid transitions between modes,

Copyright © 2019 California Institute of Technology. U.S. Govern-
ment sponsorship acknowledged.

as well as multiple scans over the snapshot area map and
target mode targets in a single overflight.

OCO-3 is mounted on an area of the ISS where the rotat-
ing solar panels of the spacecraft regularly enter its field of
view. The light reflected off of the solar panels could dam-
age the instrument, so flight software prevents the instru-
ment from pointing in this unsafe region. However, we do
not ever want to schedule observations in this unsafe region,
so this poses an additional challenge of checking the visibil-
ity of targets during scheduling.

The core of the scheduling system is an adaptation of
the Compressed Large-scale Activity Scheduler Planner
(CLASP) (Knight and Chien 2006; Rabideau et al. 2010).
CLASP supports scheduling of mapping (areal coverage)
observations respecting geometric constraints such as instru-
ment visibility and illumination conditions. CLASP will be
used nominally to generate a schedule lasting for two weeks,
that will be uploaded to the instrument weekly.

For the PMA calibration routine we were required to
schedule observations over a fixed grid of azimuth and ele-
vation points in the instrument’s frame of reference in order
to calibrate the pointing accuracy of the PMA. CLASP only
deals with targets as fixed areas in a geographic coordinate
system. For this, we used some of the geometric reasoning
available in CLASP, but created a separate scheduler for this
problem.

In the remainder of this paper we describe the design of
the scheduling system that tries to maximize the utility of the
science data OCO-3 acquires while respecting illumination,
time, visibility, and instrument safety constraints. We also
describe the scheduler developed for the PMA calibration
routine.

Prototypical CLASP Scheduling Problem

In the basic areal coverage scheduling problem, the inputs
are a set of science campaigns, each of which contains:

* target regions of interest on the Earth’s surface
* illumination constraints
* apriority

The goal is to produce an observation schedule to view these
regions as many times as possible while respecting instru-
ment constraints such as mode transition times and keepout

regions of the instrument field of view. Science campaigns
can be target regions or single point locations. We generate
a gridded approximation of target regions for faster compu-
tation, to get a set of target points.

CLASP uses the CSPICE Toolkit provided by the Navi-
gation and Ancillary Facility (NAIF) (Acton 1996) at JPL to
do geometric reasoning regarding the visibility swaths of in-
struments from the spacecraft they are attached to. The size,
shape, and location of the swaths depend on the position and
orientation of the spacecraft, and the field-of-view of the in-
strument. The planning horizon is broken up into fixed dura-
tion observations, and CLASP computes the intersection be-
tween the target grid points and the observations. Initially, a
one-pass greedy scheduling algorithm was used to place ob-
servations according to the priority of the targets they cover.

Problem Statement

The original CLASP problem statement (Knight and Chien
2006):

Given:
* aset of regions of interest R = {ry,...,r,}

* a temporal knowledge horizon (hst, het) over which we
know the vehicle’s activities

* a set of observation opportunities O = {01, ..., 0, } within
the horizon (hst, het) where each o; € O consists of a
start (o.start) and a duration (o.duration)

* a set of instrument swaths I ={i1, ..., 4, } where V(o; €
0)3(r4,14;) | (grid(o;) € grid(r;)) A (grid(o;) € grid(i;))

* ascoring function U (r;)
* a bound on memory M, 4z

* arate at which memory is used while the instrument is on
My

* a rate at which memory is recovered during downlink
Md?'ain

Our goal is to select A C O to maximize U(r;) Vr; € R
subject to instrument constraints.

For OCO-3, the data acquisition rates, downlink rate, and
memory capacity allow the instrument to continuously take
data over the regions of interest without violating memory
constraints, so we do not model them in this adaptation for
simplicity.

Operational Modes

There are four operational modes OCO-3 can be in: nadir
mode, glint mode, snapshot area map mode, and target
mode. For each mode, there is an associated set of science
campaigns to be observed with that mode. If at any point the
constraints are not met for any operational mode, the instru-
ment enters standby mode and will not collect any science
data until another observation is scheduled. Instrument cali-
bration data can be taken during this time as well.

Nadir Mode

The simplest and lowest priority of the science campaigns
is the nadir campaign, which is viewed by the instrument in
nadir mode. The nadir point is the point directly below the
instrument on the Earth’s surface. The nadir campaign con-
sists of all landmass on the Earth and has a solar zenith an-
gle (SZA) illumination constraint. When there are no other
higher priority observation opportunities over land, and the
illumination conditions are met at the nadir point, a nadir
mode observation can be scheduled. While in nadir mode,
the instrument is just pointed at the nadir spot.

Glint Mode

The glint campaign consists of all bodies of water on the
Earth and has an equal priority to the nadir campaign. The
instrument observes the glint campaign in glint mode. In-
stead of pointing at the nadir spot, OCO-3 will point off-
nadir slightly in the direction of the glint spot. The glint spot
is the location where solar radiation is maximally reflected
off the Earth’s surface toward the instrument. The angle be-
tween where the instrument is pointed and the glint spot is
called the glint offset. This value is calculated as a function
of the SZA at the glint spot. The glint campaign also has an
SZA constraint, but at the glint spot rather than at the nadir
spot.

The function for calculating the glint offset (g,) is not a
continuous function, but rather a piece-wise step function
parameterized by the SZA at the glint spot (gs.,). The glint
spot changes throughout time based on the spacecraft posi-
tion and illumination conditions.

of fseti 0 < goza < s201
of fsety szay < gsya < SZao

9o = - (D
of fset, szap_1 < gsza < 520y

The scheduling software must determine when this value
should change. It achieves this by sampling the glint spot
and calculating the SZA at some interval. When g, changes
across an interval, additional samples are taken to determine
more accurately when the g, should change. Intervals for
sampling must be chosen carefully. If the interval is too
large, the glint offset may change twice within the interval,
and the scheduler will not see the first change. To avoid this
issue, the interval is chosen based off of the maximum rate
of change of the SZA at the glint spot and the function from
SZA to glint offset.

Snapshot Area Map Mode

OCO-3 has an area mapping mode dedicated to observing
regions in key locations. Each region is approximately an
80 km square but is actually specified as a rectangle aligned
along the spacecraft track with an across track and along
track extent. In snapshot area map mode, successive scans
are taken over the region during a single overflight to view
all parts of it. The PMA moves to a corner of the square and
stays at that relative position. The forward motion of the ISS
allows one stripe of data over the square to be viewed. When

Figure 1: An illustration of observations taken by OCO-3
from the ISS in snapshot area map mode (purple swaths)
over the Los Angeles Basin (NASA 2019).

one stripe is done, the PMA moves across track in order to
take the next stripe over the region. Figure 1 shows an illus-
tration of an intermediate result of an observation taken in
snapshot area map mode. The completed snapshot will pro-
vide dense carbon dioxide data over an area of about 250
square miles (NASA 2019).

Target Mode

Campaigns viewable by the target mode consist of single
points on the Earth’s surface. Many of the targets of this type
are validation targets. These locations are part of the Total
Carbon Column Observing Network (TCCON) (of Technol-
ogy 2019), which are ground sensors that take independent
CO; measures. By observing these sensors it’s possible to
compare OCO-3’s measurements to the sensors’ measure-
ments to validate the instrument is working as expected. Ob-
servations taken in target mode are similar to those taken in
area mapping mode, but rather than covering a larger region
with multiple non-overlapping stripes in a single overflight,
the same stripe is covered repeatedly.

We try to schedule exactly two target mode observations
each day. CLASP does not have built-in support for this use
case, but we can work around that issue by taking advantage
of its extensible design. This is discussed in a later section.

Target mode and snapshot area mapping mode both have
higher priority than nadir and glint mode. We discuss the in-
teraction between the two modes later. In both, the schedul-
ing tool takes as input a list of targets and tries to schedule
short observations of those targets. This differs from glint
and nadir modes, in which the instrument will continuously
collect data as long as the constraints are met. We elaborate
on the kinds of targets relevant to each mode in later sec-
tions.

Scheduling Target Mode Observations

The original version of CLASP did not have any support
for being able to schedule a maximum number of observa-
tions of a specific instrument mode. For mission operations,

it was deemed necessary to observe two validation targets
per day. It is possible to have less than two possible obser-
vations of validation targets due to illumination conditions.
But for days when there are more than two observations for
validation targets, we want only two to be scheduled.

We can limit the number of validation target observations
to two per day by introducing a new resource, which is a
built-in CLASP feature. This resource is filled with two units
at the beginning of each day in the planning horizon. Each
time a validation target is scheduled, this resource is decre-
mented by one. A target mode observation cannot be sched-
uled on a given day if there is no available resource for it to
use.

Since no other observation mode requires a specific num-
ber of observations be scheduled, we can now ensure we
schedule two validation target observations each day by giv-
ing the target campaign to have the highest priority. This
way, whenever there is a validation target observation op-
portunity, it will be taken, up to the limit.

While giving validation targets the highest priority works
in allowing us to schedule two per day whenever possible,
it may be problematic when there are more than two ob-
servation opportunities in a single day. It is possible an ob-
servation in target mode may preclude an opportunity for
an observation in snapshot area map mode. When that is
the case, some solutions will be better than others. Snapshot
area map observations give the highest science return, so we
want to schedule as many as possible. If there are some val-
idation target observation opportunities that interfere with
area mapping opportunities and some that do not, we want
to prefer those that do not. We can accomplish this by us-
ing a two-pass algorithm. In the first pass, we identify all
the snapshot area map opportunities and schedule only tar-
get observations that don’t interfere with those times. If we
manage to schedule two validation target observations per
day in the first pass, we’re done. Otherwise, in the second
pass, we continue to schedule validation target observations
regardless of whether they interfere with other opportunities
up to two per day. In this way we can ensure we schedule ex-
actly two validation targets per day whenever possible. Once
these two passes of scheduling target mode observations are
complete, the scheduler continues adding lower priority ob-
servations to the schedule consisting of snapshot area map,
nadir, and glint modes.

Determining Visibility

OCO-3’s field of view is limited due to obstructions by other
components of the ISS. The scheduling software must ac-
count for the limitation without sacrificing too much run
time or precision. The occlusion mask is defined as a set
of polynomials for several longitude segments. Checking if
a point is contained within the mask is a constant time oper-
ation.

We currently check visibility for area map mode and tar-
get mode. For target mode, the region is the line that will
be repeatedly scanned over. For area map mode, the region
is the 80 km square surrounding the center point of interest.
As a result of not modeling the PMA movement, there may
be cases where we can’t be certain whether or not a target

will be visible at a certain time. Our answers will therefore
be one of three possibilities: “certainly visible,” “certainly
not visible,” and “possibly visible.” Our policy is to sched-

ule only observations of targets that are certainly visible.

Problem
Given inputs:
 Target: a set of points on the Earth’s surface

* Time range: start and end times of the desired observation
window

* Visibility set (V): A set of azimuth/elevation points in the
satellite-centered reference frame that describe the instru-
ment’s visibility.

Determine whether the target is visible to the instrument for

the entire time range.

Solution

The visibility mask for OCO-3 is defined by a black-box
function that maps an azimuth and an elevation to a boolean
signifying whether or not that point is visible. We can visu-
alize this mask by plotting the boundary points separating
visible and non-visible points on a unit sphere.

This unit sphere plays a key role in determining whether
or not a target is visible. Our approach is to project the target
onto the unit sphere, convert the coordinates to azimuth and
elevation, and then check for visibility using V. This process
is repeated at multiple points in time to check that whether
the target is visible for the entire time range. We define sev-
eral variations on the approach that vary in how we project
the target on the unit sphere and check that it is visible and
in how we sample in time.

Checking Visibility To check if a target is visible at a par-
ticular point in time, we start by projecting the target onto
the unit sphere around the satellite. This is done by comput-
ing the vector from the satellite to the target, translating it
into a reference frame that has its origin at the satellite’s po-
sition, and normalizing the vector. This gives a point on the
unit sphere that can be checked for inclusion in V. For glint
mode, this approach is satisfactory. But for snapshot area
map and target mode, we do not know exactly where the
PMA is pointed at any time. We consider three approaches
to addressing this complication:

* Centroid: Project only the centroid of the target and check
that the single pointis in V.

* Corners: Project the corners of the target and check that
allarein V.

* Configuration space: Define a configuration space that
characterizes all points on the unit sphere that represent
the centroid of a visible target. Project only the centroid
of the target on the unit sphere and check that the point
falls within the configuration space.

For area mapping mode, the corners are the four corners
of square that defines the region, rotated to be parallel to the
heading of the ISS. For target mode, the corners are the two
points that define the line we will be sweeping over, which

Figure 2: Tracing the visibility of a target’s centroid over
time.

are also rotated to be parallel to the heading. The visibil-
ity checking functions take in either the centroid or a list
of corners the start (st) and end (et) of the time range to
check over, and a method for updating the time to check
(timeM ethod), which is discussed in the next section.

The centroid approach has the obvious drawback that it
can never say with certainty that an area map or target mode
target is visible. At any time, even if the centroid is visi-
ble, it may be the case that one of the corners is not visible.
But it has the additional drawback that it often can not say a
target is not visible, either. If the centroid is not visible, then
clearly it can not be certain the target is visible, but addition-
ally it may be the case that the PMA is pointed at a part of
the target other than the centroid, so neither can it be certain
the target is not visible. All we can say with any confidence
is that if the centroid is not visible for the entire duration of
the observation, the target is almost certainly not visible, be-
cause at some time during the observation the PMA will be
pointed at the target’s centroid. Figure 2 shows an example
of a centroid being tracked through time, with red showing
times when the centroid is not visible, and green showing
times when it is. Algorithm 1 shows an implementation of
this visibility check.

Function
Centroid.TargetIsVisible (centroid, st, et,
timeMethod) :
t=st
while ¢ < et do
if not pointlsVisible(centroid, t) then
| return false
end
t = timeM ethod.updateTime(t, et, centroid)

end
return true
Algorithm 1: Checking Visibility Using Centroid Method

The corners approach gives much more confidence in the
results. For area map mode targets, these are the four corners
of the bounding box defining the area, and for target mode
targets, the corners are the top and bottom points of the line
that will be traced out. If all corners are visible for the entire
time range, we say the target is certainly visible. Depending

Figure 3: Tracing the visibility of a target’s corners over
time.

on the shape of the visibility set, it should give zero or very
nearly zero false positives. It also allows “certainly not visi-
ble” answers if, at any time, none of the corners are visible.
Figure 3 shows the visibility of the four corners of an area
map mode target. Algorithm 2 shows an implementation of
this visibility check.

Function Corners.TargetIsVisible (corners,
st, et, timeMethod) :
for corner in corners do
t=st
while ¢t < et do
if not pointlsVisible(corner, t) then
| return false
end
t =
timeM ethod.updateTime(t, et, corner)
end

end
return true
Algorithm 2: Checking Visibility Using Corners Method

Our implementation of the configuration space approach
will return either “certainly visible” or “possibly visible”.
We use a conservative definition of the configuration space.
We first estimate the maximum angle between the projection
of a target’s centroid on the unit sphere and the projection of
any other point within the target on the unit sphere as a func-
tion of the centroid’s position on the unit sphere. Call this
function size. We model size as a trigonometric function
with parameters that are found by performing least squares
optimization. Now, the configuration space P C V is the set
of points p € P where the angle between p and the boundary
point of the visibility set nearest to p is less than size(p). Us-
ing this definition of a configuration space, there can be no
false positives. There may be many false negatives, though,
because we use a conservative (over-)estimation of the size
of a target, and we don’t faithfully represent the polygonal
shape of the target. Algorithm 3 shows an implementation
of this visibility check.

The centroid approach requires the least computation of
the three. Only a single point must be projected onto the unit
sphere, and only that point must be checked for inclusion
in V. The four corners approach requires two or four times

Figure 4: Tracing the visibility of a target’s centroid within
the configuration space over time.

Function
ConfigSpace.TargetIsVisible (centroid,
st, et, timeMethod) :
t=st
while ¢ < et do
if not pointInConfigurationSpace(centroid, t)
then
| return false
end
t = timeM ethod.updateTime(t, et, centroid)
end
return true
Algorithm 3: Checking Visibility Using Configuration
Space Method

as many computations, depending on the type of target. All
the corners must be projected onto the sphere, and all these
points must be checked for inclusion in V. The configuration
space approach requires some amount of computation to be
done up front to compute the configuration space, but then
requires only a single point be checked for inclusion in the
space.

Sampling over time To determine whether a target is vis-
ible over a range of time, we sample various points in time
over that range. Increasing the number of samples may in-
crease the confidence in our answer, but it will also increase
the runtime of the algorithm. We consider two points in this
space:

» Constant step: Take evenly spaced samples, so that after
every sample a constant amount of time passes before tak-
ing the next.

» Adaptive step: Take larger steps when the target is near
the middle of the visibility set and smaller steps when it’s
close to the boundary.

* Max step: Take as large a step as possible, so that only the
start and end times of the observation are considered.

The constant step approach is the naive approach. If the
desired precision of the visibility window is one second, then
the constant step size must be set to one second. Algorithm
4 shows an implementation of constant step.

We can do better by exploiting what we know about the
visibility set and the motion of the target’s projection on the

Function ConstantStep.updateTime (t, et,
point) :
| retarnt+ MIN_STEP

Algorithm 4: Updating time to check using Constant Step
Method

unit sphere. Given any point projected on the unit sphere, we
can compute the angle between that point and the nearest
point on the visibility set boundary. This angle is the min-
imum distance the projected point must travel before find-
ing a visibility window boundary. We can empirically esti-
mate the maximum angular velocity of the point and then
divide the distance by this velocity to obtain a lower bound
for the amount of time it will take to reach a visibility win-
dow boundary. To compute the adaptive step size, we find
this time and then divide by a constant factor to account for
uncertainty in the calculation. Algorithm 5 shows an imple-
mentation of adaptive step.

Function AdaptiveStep.updateTime (i, ef,
point) :
leeway = angleT oM ask Boundary(point)
step =

max(MIN_STEP,lecway/ ANGLE VELOCITY)

return min(et, t + step)
Algorithm 5: Updating time to check using Adaptive Step
Method

The method for computing the adaptive step size is not
ideal. The most glaring shortcoming is that the velocity of
the target point’s projection on the unit sphere will vary with
its location on the sphere. When the satellite is directly over
the target and the projection is on the bottom of the sphere,
the velocity will be at its greatest. But when the satellite gets
farther from the target, and the projection moves away from
the bottom of the sphere, the velocity decreases.

We address this issue by finding the point on the visibil-
ity set boundary nearest to the target’s projection, projecting
that boundary point onto the Earth’s surface, and then com-
puting the distance between it and the target point. Given
that we can compute an upper bound for the velocity of the
satellite’s nadir point, we can also compute the minimum
amount of time that must pass before the target can possibly
enter or leave the visibility set. We call this method the smart
adaptive step approach. Algorithm 5 shows an implementa-
tion of smart adaptive step.

For completeness, the final approach we will consider is
the max step approach. This approach trades rigor for speed.
It requires the least computation, but it also gives us the least
information about the target. If the target is not visible at ei-
ther time, it’s almost certainly not visible for the entire du-
ration of the observation. If it is visible at both times, the
target is possibly visible. Using this method, we can never
say a target is certainly visible. Algorithm 7 shows an im-
plementation of max step.

Function SmartAdaptiveStep.updateTime (¢,
et, point) :
nearest Point =
nearest PointOnM ask Boundary(point)
pointEarth = pointOnEarth(point)
nearestPointEarth =
pointOnEarth(nearestPoint) distance =

step = max(MIN_STEP,
distance/ DISTANCE VELOCITY)
return min(et,t + step)
Algorithm 6: Updating time to check using Adaptive Step
Method

Function MaxStep.updateTime (t, et, point) :
| return et

Algorithm 7: Updating time to check using Max Step
Method

Results

Run time Figure 5 shows the average run time per area
map mode targets for each of the approaches outlined above.
There is not a considerable difference between the adap-
tive step and the smart adaptive step approaches because the
smart adaptive step approach evaluates a target’s visibility
at fewer instances in time, but for each instance in time it
requires slightly more work to determine whether a target is
visible. The adaptive step approach’s model of the motion
of the target’s projection on the unit sphere becomes less
accurate the farther the projection is from the bottom of the
sphere, so the longer the time range that we require the target
be visible, the greater the benefit of using the smart adaptive
step approach.

Effectiveness Figure 6 compares the effectiveness in de-
termining the visibility of snapshot area map targets of the
four corners, centroid, and configuration space approach, as-
suming the time step is computed using the constant step,
adaptive step, or smart adaptive step approaches—all are
equivalent.

Uncertainty in Orbital Ephemeris

While planning, we use an orbital ephemeris generated on
a weekly basis. Due to the ISS being in Low Earth Orbit,
there is considerable drag from the Earth’s atmosphere. This
results in the ISS drifting slightly from its predicted position.
It is straightforward to account for this error in the compu-
tation of visibility windows. If we require that a target must
be visible to an instrument for the time range [st, et], and
we know that our prediction for the time a location will be
reached may be off by up to err, we can say that if the target
is visible for the range [st — err, et + err], it must be visi-
ble for the range [st, et]. Similarly, if the target is not visible
over the range [st+ err, et — err], then it must not be visible
over the range [st, et].

distance Between(point Earth, nearest Point Earth)

Run time by approach
250 T
g N Constant step
PS4 N Adaptive step
200 4 B Smart adaptive step
o~ I Max step
E
& 150
8
8
=¥
Q
£ 100
5
~
50

Four corners Centroid Configuration space

Figure 5: Average run time per target for each approach.

Effectiveness by approach

100%
I Certainly visible
80% - I Possibly visible
I Certainly not visible
60%
40%
20%

0% -

Centroid

1%}
=
£
=}
Q
=
=1
o

e

Configuration space

Figure 6: Effectiveness metrics for determining visibility of
snapshot area map mode targets for each approach if not us-
ing max step.

We have found empirically that our prediction for the time
when the ISS reaches a location may be off by up to three
seconds. We require that every target must be visible for two
minutes, so the majority of targets we could determine to be
visible if there were no error in our prediction we also find
to be visible accounting for error.

Final Approach

The approach being used operationally uses the four corners
method with adaptive step, and accounts for three seconds
of error in the ephemeris. Figure 7 compares the amount of
snapshot area map targets that could be scheduled if there
were no visibility constraints to the number of targets sched-
uled with the visibility constraints as well as accounting for
three seconds of error.

Number of targets observed per week

420

180

Number of targets observed

120

@ 4 —— Ignoring occlusion mask
—— With occlusion mask and no uncertainty
—— With occlusion mask and 3s uncertainty

Week

Figure 7: Graph comparing the number of snap shot area
map targets that could be scheduled if there were no keep-
out zones, the targets that could be scheduled with the keep-
out zones and no error in the ephemeris, and the targets that
could be schedueld with the keepout zones and accounting
for error in the ephemeris.

PMA Calibration

Aside from its nominal science operation, the scheduling
software for OCO-3 must also schedule the PMA calibra-
tion routine. Calibrating the PMA involves pointing the in-
strument at pre-defined points in the spacecraft’s reference
frame, taking images, and using the spacecraft’s location to
construct reference images against which the test images are
compared. In order to ensure accuracy across the PMA’s en-
tire range of motion, the points are taken from a grid in the
azimuth/elevation space where azimuth ranges from 0 to 340
degrees in 20 degree increments and elevation ranges from
30 to 80 degrees in 10 degree increments. To ensure we can
construct quality reference images, we require the images be
of land, at a point where the SZA is lower than some thresh-
old.

There are two parts to scheduling PMA calibration: iden-
tifying the time windows during which each az/el point sat-
isfies the above constraints in the first part, and scheduling

observations of these points while minimizing PMA move-
ment (and time spent) in the second part. These problems
are similar to those solved by CLASP, but CLASP does not
currently directly support defining targets and constraints in
different reference frames.

We start by creating a grid which serves as a discrete rep-
resentation of the Earth’s surface. Each grid point represents
the terrain at the corresponding point on the surface - either
land or water. We use this grid to identify the set of points on
a land/water boundary, where a point is included in the set
if any of the point’s neighbors have a different terrain type
than that of the point. We can then construct a distance field,
where each point in the grid gives the distance to the near-
est land/water boundary. This distance can be computed for
each point by iterating over the set of land/water boundary
points and calculating the distance for each using the haver-
sine formula. It may be possible to do this more efficiently
using R-trees (Schubert, Zimek, and Kriegel 2013), but we
find this is not the bottleneck in the scheduler. We use the
distance field to accelerate the search for time windows dur-
ing which the instrument will be pointed at land when ori-
ented toward a particular az/el point. Computing the point on
the Earth the instrument is looking at is a relatively expen-
sive operation, so we try to minimize the number of times we
have to do it by sampling one point in time, determining the
distance from the computed point to the nearest land/water
boundary, estimating the time it will take to travel that dis-
tance, and then stepping forward that amount of time minus
some safety margin.

Once we have computed the time windows subject to the
land constraint, we can refine those windows to satisfy the
SZA constraint. We sample the SZA at the target point at
regular intervals over the range of each time window, re-
stricting each window as necessary - or possibly splitting
one into multiple windows - so that we select only time win-
dows where the SZA at the target point is less than the con-
straint.

The second part of the scheduling problem is using the
computed time windows to schedule calibration observa-
tions of each az/el point in the shortest time possible. The
PMA takes time to switch targets, determined by the angular
distance between the two targets, and our goal is to observe
each az/el point while minimizing the time spent switching
targets. To acquire high quality images, we require a mini-
mum dwell time - the PMA must stay fixed on a particular
az/el point for a minimum of this time before moving to the
next target. We can simplify the problem by shortening the
ends of our time windows by the dwell time - so that they
represent the times during which we may start an observa-
tion - and by adding the dwell time to the time it takes to
move between any two targets. We have thereby reduced the
problem to an instance of the traveling salesman problem
with multiple time windows, and we can solve the problem
using standard heuristics for the traveling salesman problem
(Hurkala 2015).

Future work

In the future we may have access to more precise predictions
about the orientation of the satellite and the instrument. We

can use this data to improve the accuracy of our snapshot
area mapping target visibility analysis. Currently, we assume
the visibility set is defined in a reference frame centered at
the satellite and oriented such that one axis points directly
toward the nadir point. In reality, the orientation may vary
by up to a few degrees. We can account for this uncertainty
by conservatively shrinking the visibility set, but this may
rule out observations that would, in fact, be possible. We can
improve our analysis by using the orientation data to adjust
the reference frame in which the visibility set is defined.

In the adaptive step approaches to computing visibility
windows, we come up with a conservative estimate for the
earliest time the target’s visibility status may change by only
considering the distance between the target and the nearest
point on the visibility set boundary. Instead, we could use
our knowledge of the direction of the satellite’s motion to
determine approximately where on the visibility set bound-
ary the target will next intersect. By doing so we could take
more aggressive step sizes, reducing the number of samples
required.

For the PMA Calibration, we currently only consider
scheduling each point once. Once a schedule is found, there
are still times before the end of the schedule when the visi-
bility constraints are met, but no observations are scheduled.
Adding in more observations after meeting the minimum re-
quirements for the schedule can allow more samples for cal-
ibration.

Related Work

CLASP was previously used on the ground to schedule im-
age acquisitions by the IPEX CubeSat (Chien et al. 2016).
CLASP has been used for mission observation coverage
studies for the upcoming Europa Clipper and JUICE mis-
sions (Troesch, Chien, and Ferguson 2017), and is being
used to develop the observation plan for the NISAR mis-
sion (Doubleday and Knight 2014; Doubleday 2016). The
ARIEL mission study (Roussel et al. 2017) also focused
on long term observation planning. The ARIEL and Eu-
ropa Clipper studies assume perfect knowledge of future
ephemeris and certain execution of scheduled observations,
which is appropriate for early mission design analysis, but
not mission operations. This paper focuses on the mission
operations use case, where there is some amount of uncer-
tainty in the ephemeris.

CLASP was also used as a prototype for early stage
mission planning of the THEMIS instrument on the Mars
Odyssey spacecraft (Rabideau et al. 2010). The focus in
the THEMIS study is performance of the squeaky wheel
scheduling algorithm. This paper only considers a single
pass of squeaky wheel when scheduling.

Conclusion

This paper has described the use of an automated scheduling
system in development for the operations of the OCO-3 mis-
sion. We described each of the instrument’s four operational
modes and the scheduling of these modes. This involved
adapting CLASP to achieve the desired results of only view-
ing two validation targets per day, and only viewing targets

within the designated safe zone. We outlined multiple ap-
proaches to the problem of determining target visibility and
their respective results. We also described a scheduler for
the instrument PMA calibration routine of imaging multiple
azimuth and elevation points.

Acknowledgements

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References

Acton, C. 1996. Ancillary data services of nasa’s navigation
and ancillary information facility. In Planetary and Space
Science, volume 44, 65-70.

Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Stanton, E.; and Piug-Suari, J. 2016. Onboard auton-
omy on the intelligent payload experiment (ipex) cubesat
mission. Journal of Aerospace Information Systems (JAILS).

Doubleday, J., and Knight, R. 2014. Science mission plan-
ning for nisar (formerly desdyni) with clasp. In SpaceOps
2014.

Doubleday, J. R. 2016. Three petabytes or bust: Planning
science observations for nisar. In SPIE 9881.

Hurkala, J. 2015. Time-dependent traveling salesman prob-
lem with multiple time windows. In Position Papers of the
2015 Federated Conference on Computer Science and Infor-
mation Systems, volume 6 of Annals of Computer Science
and Information Systems, 71-78.

Knight, R., and Chien, S. 2006. Producing large observa-
tion campaigns using compressed problem representations.
In International Workshop on Planning and Scheduling for
Space (IWPSS-2006).

NASA. 2019. Oco-3 https://ocov3.jpl.nasa.gov/ retrieved
2019-04-23.

of Technology, C. L 2019. Tccon
http://www.tccon.caltech.edu/ retrieved 2019-04-23.

Rabideau, G.; Chien, S.; Mclaren, D.; Knight, R.; Anwar, S.;
Mehall, G.; and Christensen, P. 2010. A tool for scheduling
themis observations. In International Symposium on Space

Artificial Intelligence, Robotics, and Automation for Space
(ISAIRAS 2010).

Roussel, S.; Pralet, C.; Jaubert, J.; Queyrel, J.; and Duong,
B. 2017. Planning the observation of exoplanets: the
ariel mission. In International Workshop on Planning and
Scheduling for Space (IWPSS 2017).

Schubert, E.; Zimek, A.; and Kriegel, H.-P. 2013. Geodetic
distance queries on r-trees for indexing geographic data. In
Advances in Spatial and Temporal Databases, 146—164.
Troesch, M.; Chien, S.; and Ferguson, E. 2017. Using auto-
mated scheduling to assess coverage for europa clipper and

jupiter icy moons explorer. In International Workshop on
Planning and Scheduling for Space (IWPSS 2017).

